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J. Phys. A: Math. Gen. 16 (1983) L213-L218. Printed in Great Britain 

LETTER TO THE EDITOR 

Exact results for 2~ directed animals on a strip of finite 
width 

V Hakimt and J P NadalS 
t Laboratoire de Physique Theorique et Hautes Energies$, Universite Paris-Sud, BLtiment 
211, 91405 Orsay, Francell + Groupe de Physique des Solides, ENS, 24 rue Lhomond, 75231 Paris Cedex 5 ,  France 

Received 22 November 1982 

Abstract. We prove a conjecture giving the exact number of directed animals of s sites 
with any root, on a strip of finite width of a square lattice. We also rederive more simply 
some previous results concerning the connective constant and particular eigenvectors of 
the transfer matrix. 

The problem of directed lattice animals has recently attracted much theoretical 
attention (Day and Lubensky 1982, Dhar et a1 1982, Redner and Yang 1982). In 
particular, Nadal et a1 (1982) have found some exact results for two-dimensional 
animals living on a strip of finite width. Namely, they derived the expression of the 
connective constant and of the eigenvector of the transfer matrix when the eigenvalue 
is one (see (i) and (ii) below). They also proposed a conjecture ((iii) below) for the 
number of animals of s sites on a strip of width n which is a generalisation of a 
previous expression guessed by Dhar et a1 (1982). We give in this letter a simple 
proof of this general conjecture. In the special case of animals of infinite width 
beginning with only one occupied site, the result has been obtained by Dhar (1982) 
by relating 2~ animals and a hard square model previously studied (Verhagen 1976, 
Baxter 198 1). We also rederive more straightforwardly the other two exact results 
of Nadal et al. 

We begin by briefly reviewing the formalism and notation used in Nadal et al. We 
consider directed site animals on a strip of finite width n of a square lattice. The 
preferred direction lies along a diagonal of the lattice. The strip is infinite along this 
preferred direction and has periodic boundary conditions in the perpendicular direction 
(see figure 1). We call fl,(C) the number of directed animals consisting of s sites and 
beginning with a root C. C represents a given set of occupied sites at column 0 and 
any animal which is counted in fl,(C) is a cluster of s sites with the following property: 
any site of the cluster can be reached from at least one site of the root by a path 
which never goes opposite to the preferred direction. For s sufficiently large &(C) 
is expected to have a simple asymptotic form: 

(1) flS(C) - CL ;a (Cl. 
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Figure 1. A directed animal on a strip of a square lattice. The periodic boundary conditions 
are realised by the identification of the two heavy lines. The horizontal arrow indicates 
the preferred direction. The root of the animal is the configuration on the first row, which 
is in the broken rectangle. 0 Occupied site; 0 empty site. 

The purpose of this letter is to give simple proofs of the three following facts: 

(0 /Lo = 1 + 2 cos(.rr/2n); 

where a, = (2p + 1)7r/2n and the Ni are the number of holes of i consecutive sites 
in the root C. 

Let us define A? by 

ni(C, C') = 1 

ni(C, C') = 0 otherwise. 

if the configuration C' is allowed to follow configur- 
ation C, 

If we call M the restriction of ni to the space of non-empty roots (C # CO), fl,(C) 
satisfies the following recursion relation: 

fls+m(C)(C) = C M(C,  C')fls(C'), s a l ,  (2) 
C' 

where m (C) is the number of occupied sites of the root C If we impose the additional 
conditions 

fl, = 0, l s s<m(C) ,  

flm,c)(C) = 1, 

the recursion relation (2) allows us to calculate fl,(C 
Therefore, (2) and (3a, b )  define fl,(C) uniquely. The 
are defined by 

(3a )  

( 3 b )  
without upper limit for s. 

ransfer matrices F, and T, 

F,(C, C') = (l/@)"'c'ni(c, C'), T, = ( ~ / / L ) " ' ~ ' M ( C ,  C'). (4) 

The connective constant / L ~  is the largest value of for which the largest eigenvalue 
of T, is one (Nadal et a1 1982). The components of the eigenvector corresponding 
to this eigenvalue are a ( C )  in the root base, as is readily seen by putting (1) into (2). 
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We represent a root by a sequence of n $-spins, occupied sites being up spins and 
empty sites being down spins. Then it is not difficult to see that one can rewrite T 
as an operator acting in this space of spins: 

The arrow means that the are written from right to left with increasing j and 
the subscript a means that the trace and ordered product are to be taken in the 
auxiliary space (where T, is a 2 x 2 matrix) and not in the spin internal spaces where 
the matrices A, B, D are operators 

Now a (C, CY) defined by 

may be rewritten as 

a ( C , a ) = T r  M,,(a,;(l+coth;a)) 
K = l  

where ( T ~  = *1 is the spin at site K of the root C and M+, M- are two matrices: 

In order to check (8), it is sufficient to use the three properties 

MP, =M+, 

M ?  (a, U )  = M-(pCY, U), 

Tr(M?M? . . . M?vWk) = Tr(M+M!* ) x . . . x Tr(M+M!k). 

We now search for the eigenvector It,b(a)) of T, in the form 

I~(/(~J=c C U ( C ,  a ) / ~ ) = ~ r a ( F ~  .I> IC,) 

with Zj  = M+Dj +M-Bp 

Faddeev 1980), we try to find a 4 x 4 matrix R acting in a 0 a such that 
Taking inspiration from a standard technique of integrable systems (Baxter 1982, 

where X may be any operator. Indeed, the existence of R ensures that It,b(a)) is an 
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eigenvector of f with eigenvalue one: 

By taking the trace in a on both sides of (9), R disappears and one sees that the 
equality cannot be true unless 

p = 1 + 2 c o s h a .  (10) 

In this case, R can be found. For example, a good choice is 

>. 
M-(-a/2, U )  -1 --M-(-a, u)M+ 

R = (  0 1 

Thus we have proved that /$(a)) is an eigenvector of eigenvalue one of f,, if p and 
a are related by (10). It is also an eigenvector of T,, with eigenvalue one only if its 
component cosh(na) on ICo) vanishes. Thus every I$(ia,)), where ap = (2p + 1)7r/2n, 
is an eigenvector of TwD with eigenvalue one. However, it is only if a =ao and 
p = 1 + 2  cos a. that all the a (C, a) are positive and that the largest eigenvalue of the 
transfer matrix is equal to 1. This concludes the demonstration of (i) and (ii). 

We proceed to prove the conjecture (iii). We observe that CL 2 (C, a,) is a solution 
of the recurrence relations (2) because l$(iap)) is an eigenvector of Twp with eigenvalue 
one. If we find a linear combination of these solutions Z::: App %a (C, cyp) which verifies 
the initial conditions (3a, 6 )  we can conclude that 

We are going now to show that 

A, = (-l)'(sin ap)/(l  + 2  cos a,) 

satisfies all the requirements. This will complete the proof of (iii). Indeed, consider 
the meromorphic function f ( Z ) ,  

where M - ( Z )  is a straightforward continuation in the complex plane of M-(a, +(1+ 
coth $a)) 

l + Z + l / Z  1 + 1 / z  1 
M - ( Z )  = ( -1 ) =pm. -(1 + Z )  

The fact that Xi, Yi are arbitrary will allow us to prove all the conditions (3a, b )  at 
once. We readily see the analytic structure o f f :  

(a) f decreases at infinity like Z-3;  
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(b) f has poles of order one at: 

0, with a residue R,  
4ih 4ih m 

R = T r  n (MA(O)+XiYN+)-Tr n MA(O)= n ( I+XiYi)-I ;  
i = l  i = l  i = l  

Z, = exp(ia,), a, =- r, 0 ~p s 2n - 1, with a residue 2p + 1 
2n 

1 cos a,  - i sin a, R =- - i ( - l )P  
2n 1+2c0sffp 

4ih 
(M-(Z,)+Xi(l  + Yipp)M+)-Tr n (M-(Z,)+XiM+)). 

i = l  i = l  

It may seem to the reader that there are two other poles when 2 = exp* (i2r/3),  but 
he should notice that the expression in parentheses vanishes at these values. (a) 
implies that the sum of the residues vanishes: 

sin a, Zn-1 n-1 

(-I), - Lo R p  = J o  1 + 2  cos a,  

= fi ( l + x , Y i ) - l  
i = l  

(we have added together R, and Rzn-p-l) .  Equation (11) is an equality between 
polynomials in 2n unknowns. The equality of the polynomials implies the equality 
of their coefficients. If we take the coefficient of I I iccXi and remember (8) we find 

1 n - 1  sin a, 
n ,=o 

( n (1 + pPyi) - I) a (c, ia,) = I. l + 2 c o s a p  i c c  
- c (-11, 

This implies now 

1 i f s = m ( C ) ,  1 n-1 

- 1 (-1)’ sin a,(1 + 2  cos a , ) ~ - ~ a ( ~ ,  ia,) = ( 
if n ,=o s s  <m(C), 

and concludes the proof of (iii). 
As is well known, Y; = 8 = d (Breuer and Janssen 1982, Cardy 1982) is a con- 

sequence of (iii) (Nadal et a1 1982, Dhar 1982). The last exponent of interest, VI,=& 
which gives the average asymptotic animal length, has not been computed analytically 
so far. This would require a generalisation of the method in order to find other 
eigenvectors of T, or at least its left eigenvector for the eigenvalue one, since the 
matrix T is not symmetric. 

We are grateful to B Derrida and J Vannimenus for a careful reading of the manuscript 
and for many useful criticisms and suggestions. 

Note added. The choice of periodic boundary conditions for the strip is not essential. 
It is, for example, possible to use the same techniques for a strip with free boundary 



L218 Letter to the Editor 

conditions (i.e. the strip of figure 1 is cut along the two heavy lines with the site 1 at 
the bottom of the root and the site n = 5 at the top). The boundary condition is taken 
into account by adding a matrix under every trace. One can then prove in complete 
analogy with the main result of this letter that 

1 1 sin zap 

where now a, = ( p  + l ) t r / (n  + 1) and h,  is the number of sites in the hole which ends 
at the boundary (if it exists). This hole must not be counted in the Ni’s. 
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